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Abstract

Purpose – To investigate the effect of viscous dissipation on unsteady, combined convective heat
transfer to water near its density maximum in a rectangular cavity.

Design/methodology/approach – The upwind finite difference scheme along with successive over
relaxation iteration technique is used to solve the governing equations for mixed convection flow of
water with density maximum inversion in a rectangular cavity.

Findings – The effect of viscous dissipation was to increase the fluid temperature and resulted in the
formation of vortex motion near the lower part of the cavity in an opposite direction to the central
vortex. An increase in the Eckert number and Reynolds number of the flow resulted in augmented
surface heat transfer rates from the top heated surface.

Research limitations/implication – The analysis is valid for unsteady, two dimensional laminar
flow. Isothermal conditions are assumed for the top and bottom walls. An extension to unsteady three
dimensional flow case is left for future work.

Practical implications – The method is very useful to analyze nuclear reactor thermal/hydraulic
loss of coolant transients, energy conservation, ventilation of rooms, solar energy collection, cooling of
electronic equipment, dispersion of waste heat in estuaries and crystal growth in liquids.

Originality/value – The results of this study may be of interest to engineers interested in heat
transfer augmentation of mixed convection in window cavities.
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Nomenclature
Cp ¼ specific heat at constant pressure

(J kg21 K21)
g ¼ gravitational acceleration (m/sec2)
Ra ¼ Rayleigh number
Re ¼ Reynolds number

Gr ¼ Grashof number
H ¼ enclosure height (m)
K ¼ effective thermal conductivity of the

media (W/m K)
p ¼ fluid pressure (Pa)
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Pr ¼ Prandtl number
t ¼ time (s)
T ¼ temperature (8C)
u ¼ velocity in x-direction (m/s)
U0 ¼ velocity of the moving surface
v ¼ velocity in y-direction (m/s)
W ¼ enclosure width (m)
x, y ¼ Cartesian coordinates (m)
X, Y ¼ dimensionless coordinates
b ¼ coefficient of thermal expansion of

fluid (K21)

u ¼ dimensionless temperature
l ¼ dimensionless heat absorption/

generation parameter
m ¼ effective dynamic viscosity (Pa/s)
n ¼ effective kinematic viscosity (m/r)
r ¼ fluid density at reference temperature

(Tc)
t ¼ dimensionless time
c ¼ stream function (m2/s)
V ¼ dimensionless vorticity

1. Introduction
Combined convective heat transfer in cavities has possible applications in many
engineering, technological, and natural processes. This includes nuclear reactors, solar
ponds, lakes and reservoirs (Imberger and Hamblin, 1982), solar collectors (Ideriah,
1980), and crystal growth (Moallemi and Jang, 1992). Moreover, the flow and heat
transfer in a shear- and buoyancy-driven cavity arise in industrial processes such as
food processing and float glass production (Pilkington, 1969).

Combined forced-free convective flow in lid-driven cavities or enclosures occurs as a
result of two competing mechanisms. The first is due to shear flow caused by the
movement of one of the walls of the cavity while the second is due to buoyancy flow
produced by thermal non-homogeneity of the cavity boundaries. Understanding of
these mechanisms is of great significance from technical and engineering standpoints.
This problem has been used extensively as a benchmark case for the evaluation of
numerical solution procedures for the Navier-Stokes equations (Agarwal, 1981; Young
et al., 1976; Morzynski and Popiel, 1988; Thompson and Ferziger, 1989; Schreiber and
Keller, 1983). Koseff and Street (1984) studied experimentally as well as numerically
the re-circulation flow patterns for a wide range of Reynolds (Re) and Grashof (Gr)
numbers. Their results showed that the three-dimensional features, such as corner
eddies near the end walls, and Taylor-Gortler like longitudinal vortices, have
significant effects on the flow patterns for low Re.

Both thermally stable and unstable lid-driven flows inside enclosures were
investigated numerically by Torrance et al. (1972) for fixed values of Re and Pr. Their
numerical results indicated that the Richardson number, which represents the ratio of
buoyancy to shear forces, is a controlling parameter for the problem. Prasad and Kose
(1989) conducted an experimental investigation of recirculating flow caused by
combined forced and natural convection heat transfer in a deep lid-driven cavity filled
with water. For the range of the governing parameters studied, their results indicate
that the overall heat transfer rate is a very weak function of the Gr for the examined
range of the Re. The effects of the Prandtl number (Pr) on laminar mixed convection
heat transfer in a lid-driven cavity were studied numerically by Moallemi and Jang
(1992). Their numerical simulations revealed that the influence of the thermal
buoyancy force on the flow and heat transfer inside cavities is predicted to be more
pronounced for higher values of Pr. Later, Iwatsu et al. (1993) analyzed numerically
mixed convection heat transfer in a driven cavity with a stable vertical temperature
gradient. Their results showed that the flow features are similar to those of a
conventional driven cavity of a non-stratified fluid for small values of the Richardson
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number (Ri ). Also, it was found that for high values of the Richardson number, much of
the fluid in both the middle and bottom portions of the cavity interior is stagnant.
Recently, Aydin (1999) investigated aiding and opposing mechanisms of mixed
convection in a shear- and buoyancy-driven cavity and determined the range of the
Richardson number for the forced-mixed-free convection regimes.

All the above studies were confined to fluids other than water with maximum
density inversion. It is well known that studies of the effects of density variation are
associated primarily with two topics. The first is Rayleigh-Benard instability that is
caused by a negative vertical temperature gradient. At and above a critical Rayleigh
number convection develops in the unstable lower layer and extends into the stable
upper layer (see Musman, 1968; Merker et al., 1973; Moore and Weiss, 1973; Robillard
and Vasseur, 1981). The second is natural convection in an enclosure that is induced by
sidewall heating where the two vertical walls are held at different temperatures. In this
case, fluid motion occurs at all nonzero values of the Rayleigh number.

Watson (1972) analyzed the effect of density inversion on the fluid flow and
heat transfer in a square vessel for values of Ra, the Rayleigh number, which were less
than 2 £ 104. The results showed that the maximum density effect is greatest when
DT ¼ 88C: Seki et al. (1978) investigated natural convection both numerically and
experimentally in rectangular vessels. The cold vertical wall was maintained at 08C
while the hot wall temperature varied from 1 to 128C. Lin and Nansteel (1987)
investigated numerically the natural convection in a square enclosure containing water
near its density maximum and found multi-cellular flow structures for certain ranges
of values of the density distribution parameter which is independent of Ra.

In all the above-quoted studies the following parabolic density-temperature
relationship (as given by Gebhart and Mollendorf, 1977) was considered:

r ¼ r0½1 2 bðT 2 T0Þ
2� ð1Þ

where b ¼ 8 £ 10268C22 and r0 is the maximum density which occurs at the
temperature T0 ¼ 3:988C. Tong and Koster (1993) used the above density-temperature
relation to investigate natural convection flow of water in a differentially heated
rectangular cavity with adiabatic horizontal walls. Such work was extended by
Ishikawa et al. (2000) whose numerical simulations also took into consideration the
temperature dependence of the fluid density, thermal conductivity and viscosity for
water near to 48C as prescribed by the above authors.

Very recently, Hossain and Rees (2003) have investigated convective flow in a
cavity which is induced by differential heating of the sidewalls and assisted by internal
heating. In this investigation, attention has been focused on convection near the
density minimum for water and the Prandtl and Rayleigh numbers have been fixed at
Pr ¼ 11.58 and Ra ¼ 105.

Further it should be mentioned that in all the above studies the effect of heat due to
viscous dissipation in the flow field and the heat transfer has been neglected. The
present work, therefore, extends the previous studies of mixed convection flow of water
with density maximum inversion confined in a rectangular cavity by bringing into
account the effect of the heat due to viscous dissipation. In this case, we consider the
fact that two horizontal surfaces are maintained at two different uniform temperatures
and the vertical surfaces are insulated. Further the top horizontal surface is kept
moving in its own plane at a constant speed while all other surfaces are fixed.

Effect of viscous
dissipation

7



The reduced dimensionless equations governing the flow have been simulated
numerically by employing an upwind finite-difference method, together with the
successive over-relaxation (SOR) iteration technique. The results are displayed
graphically in terms of streamlines and isotherms, which show the combined effect of
heat due to viscous dissipation and density inversion for cavities with differential
heating of the horizontal surfaces.

2. Formulation of the problem
Consider a rectangular enclosure of height H and of width W filled with water at
maximum density, with top moving surface and bottom surface maintained at a
constant temperature TH and TC (TH . TC) and with two insulated vertical walls.
In the flow field, we also bring into account the effect of heat due to viscous dissipation.
We further assume unsteady laminar flow of a viscous incompressible fluid having
constant properties. The effect of buoyancy is included through the well-known
Boussinesq approximation. Finally, the direction of the gravitational force is as
indicated in Figure 1.

The governing non-dimensional equations, expressing the conservation of mass,
momentum, energy are:

7·V ¼ 0 ð2Þ

›V

›t
þ V ·7V ¼ 27pþ

1

Re
72Vþ

Gr

Re 2
u 2e ð3Þ

›u

›t
þ V ·7u ¼

1

PrRe
72uþ

Ec

Re
F ð4Þ

where e ¼ (0, 1) is a unit vector in the direction of the buoyancy force, V ¼ {U, V} is
the velocity vector, p is the pressure, u is the temperature function and F is the viscous
dissipation function, which is defined by:

F ¼ 2
›U

›X

� �2

þ
›V

›Y

� �2
" #

þ
›U

›Y
þ

›V

›X

� �2

ð5Þ

where

Re ¼
U 0H

n
; Ra ¼

gbðDTÞ2H 3

an
; Pr ¼

n

a
; Gr ¼

Ra

Pr
; Ec ¼

U 2
0

CpDT
ð6Þ

Figure 1.
The flow configuration
and the coordinate system
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are, respectively, the Reynolds number, Rayleigh number, Prandtl number Grashof
number, and the viscous dissipation parameter, known as Eckert number.

The dimensionless variables are given as follows:

X ¼
x

H
; Y ¼

y

H
; t ¼

tU 0

H
; V ¼

v

U 0
; u ¼

T 2 T0

DT
ð7Þ

where, DT ¼ TH 2 TC ; T0 ¼ (TH þ TC)/2 is the mean temperature and v ¼ (u, v).
Boundary conditions:

U ¼ 1; V ¼ 0; u ¼ ðTH 2 T0Þ=DT at Y ¼ 1

U ¼ 0; V ¼ 0; u ¼ ðTC 2 T0Þ=DT at Y ¼ 0

V ¼ 0;
›u

›Y
¼ 0 at X ¼ 0;A

ð8Þ

where A ¼ W/H is the dimensionless width of the cavity.
Eliminating the pressure terms from equation (3) and using the equation of

continuity (2) gets

›V

›t
þ

›ðUVÞ

›X
þ

›ðVVÞ

›Y
¼

1

Re

›2

›X 2
þ

›2

›Y 2

� �
Vþ 2

Gr

Re 2
u
›u

›X
ð9Þ

where

V ¼ 2
›2

›X 2
þ

›2

›Y 2

� �
c ð10Þ

is the vorticity and c is the stream function defined by:

U ¼
›c

›Y
; V ¼ 2

›c

›X
ð11Þ

The energy equation now may, also, be obtained as:

›u

›t
þ

›ðUuÞ

›X
þ

›ðVuÞ

›Y
¼

1

PrRe

›2

›X 2
þ

›2

›Y 2

� �
uþ

Ec

Re
F ð12Þ

Knowing the solutions of equations (9)-(12) satisfying the boundary conditions given in
(8) one can calculate the rate of heat transfer in terms of the Nusselt number at the left
and right walls of the cavity, from the following relation:

Nu ¼ 2
›T

›Y

� �
Y¼0;1

ð13Þ

Solutions of equations (9)-(12) that govern the flow are obtained numerically employing
an upwind finite-difference method, together with a SOR iteration technique. Details of
this method had already been discussed in Hossain and Wilson (2002) and Hossain and
Rees (2003, 2004). It is clear that the non-dimensional parameters of interest are the
Reynolds number, Re; Grashof number, Gr; the Prandtl number, Pr; the dissipation
parameter, Ec. In the present investigation, keeping fixed the values of the Prandtl
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number at 11.58 and the Grashof number at 105, solutions are obtained for values of
Ec ¼ 0.0, 0.05, and 0.1 at Re ¼ 100. Solutions are also obtained for different TH ( ¼ 4, 8,
and 128C) and Re ( ¼ 10, 50, 100, 150, and 200) but keeping Ec ¼ 0.05. Throughout the
present investigation the value of TC has been considered to be 08C.

The results, which are shown and discussed in the following sections, have been
calculated from zero initial velocities and mean values of temperature. A grid
dependence study has been carried out, as in Hossain and Wilson (2002) and Hossain
and Rees (2003) for a thermally-driven cavity flow, for different values of the physical
parameters, with meshes of 41 £ 41, 51 £ 51 and 61 £ 61 points. Here also, with the
aforementioned mesh points, numerical values of cmax and cmin have been calculated
and entered in Table I taking into consideration that Ra ¼ 10.0 and Ec ¼ 0.1. From this
table one can observe very small differences in the maximum or minimum values of c
between above sets of meshes. Hence we have chosen to use 51 £ 51 mesh points
throughout the present computations for t ¼ 150 with a time step of 1024, which was
found to be sufficient to reach the steady-state situation for the fluid of Pr ¼ 11.58 and
Gr ¼ 104. In Figure 2 we demonstrate the values of the average Nusselt number, Nuav,
calculated from:

Nuav ¼
1

A

Z A

0

›u

›Y

� �
Y¼1

dX

along the heated surface of a rectangular cavity for A ¼ 2 against t. In this figure the
graphs represents the average Nusselt number for Ec ¼ 0.0, 0.5 and 1.0 while
Re ¼ 100.

From this figure it can be seen that the numerical values of Nuav reach their
respective steady values long before t ¼ 150.0 and therefore throughout the present
computations we have taken the value of t ¼ 150.0.

Mesh points 41 £ 41 51 £ 51 61 £ 61
cmin 26.1190 26.0669 25.9923
cmax 0.6924 0.6713 0.6515

Note: Numerical values of cmin and cmax for different grid points while A ¼ 1, Ra ¼ 10.0, and
Ec ¼ 0.1 at t ¼ 150Table I.

Figure 2.
Numerical values of
average Nusselt number at
the top moving surface for
different Ec against t
while Pr ¼ 11.58,
Re ¼ 100.0 and TH ¼ 12.0
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3. Results and discussions
Investigation of a problem of unsteady, laminar, combined forced-free convection flow
of water, at maximum density, in a rectangular cavity in the presence of heat due to
viscous dissipation has been investigated numerically. For numerical simulation of the
dimensionless equations that govern the flow we have employed the finite-difference
approach along with the SOR iteration technique, considering the fact that both the
vertical walls of the cavity are insulated and the top and bottom walls are maintained
at different uniform temperatures. The horizontal wall at the top has been kept moving
in its own plane at a constant speed while all other walls are fixed. Some
representative, steady state, results are shown in Figures 3-6 for Gr ¼ 104 and
Pr ¼ 11.58 in terms of streamlines and isotherms. In these figures the dotted and solid
curves represent the negative and positive values of the respective functions. In case of
the streamlines, the direction of the solid lines is clockwise and that of the dotted lines
is counterclockwise. Here we shall term the cell with clockwise motion that is
dominated by the motion of the upper surface of the cavity as the primary cell and that
of counterclockwise will be termed as the secondary cell.

Figure 4.
Steady state (a) streamlines

and (b) isotherms for
different TH while
Ec ¼ 0.5, Re ¼ 100

Figure 3.
Steady state (a) streamlines

and (b) isotherms for
different Ec while

TH ¼ 12.0, Re ¼ 10.0
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We first show the effect of heat due to viscous dissipation on the streamlines by
taking the value of Eckert number, Ec, as 0, 0.05 and 0.1 while the surface
temperature TH ¼ 12.0 and the value of the Reynolds number, Re, is 10.0 in
Figures 3a(i-iii). In Figure 3a(i) it can be seen that with the present value of Re but
in absence of heat due to viscous dissipation (i.e. Ec ¼ 0), there develops two
vortices of opposite directions. The vortex with clockwise direction has developed
along the upper surface, which is expected, since the lid is driven from the left to
right. This flow is dominated by the forced flow and the center of the vortex
motion is close to the upper surface and hence the intensity of the flow is higher
in this region. In the lower part of the cavity the flow is counterclockwise. In this
case also the vortex centre is closed to the interfacial curve that separates these
vortices.

Now looking into Figures 3a(ii and iii), that are for Ec ¼ 0.05 and 0.1, it can be seen
that the flow rate of vortices near the upper surface increases and the centre of the
vortex moves towards the right top corner of the cavity. We may further observe that

Figure 5.
Steady state (a) streamlines
and (b) isotherms for
different Re while
TH ¼ 12.0 and Ec ¼ 0.05

Figure 6.
Steady state (a) streamlines
and (b) isotherms for
different Ec while
TH ¼ 12.0, Re ¼ 100.0,
Pr ¼ 11.58, Gr ¼ 104, and
A ¼ 2:1
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addition of heat due to viscous dissipation has forced to develop another vortex
motion near the lower surface of the cavity in the direction opposite to the central one.
Growing of this vortex also reduces the size as well as the flow rate in the vortex that
was initially occupying the lower region of the cavity. This kind of flow is possible
since addition of heat due to viscous dissipation, however small, will increase the
temperature of the fluid internally that will be in support of accelerating the motion of
the fluid.

The effects of heat due to viscous dissipation on the isotherms are shown in the
bottom curves of Figures 3b(i-iii). From these figures it can be seen easily that
the temperature of the fluid near the upper surface of the cavity increases with the
increasing value of the Ec, that is expected; since in that region the rate of flow
increases owing to increase of Ec as well as the rate of heat transfer from the top
moving surface increases accordingly (see Figure 7a).

We see in Figures 4a(i-iii) effect of increasing TH in a square cavity with all
other parameters held fixed, and with Re ¼ 100 and Ec ¼ 0.5. An increase in TH

means that we have a decrease in the heat dissipation effect. Associated with that
is the increasing size of the bottom left recirculation region, and that corresponds
to fall in the temperature in the upper half of the cavity that is seen clearly in
Figures 4b(ii-iii). When TH is relatively small (see Figures 4(i,ii), there remains an
ascending boundary layer in the bottom left corner of the cavity, since buoyancy
forces are effective. Gradually this boundary layer thickness increases
progressively as TH increases and occupies the entire region near the lower
surface. That is a clockwise circulation increasing in size as TH increases. Increase
of temperature near the top moving surface owing to increase in TH is quite
natural (Figures 4b(i-iii)). We further observe that at a relatively smaller value of
TH there exists a thermal boundary layer region along the cold bottom surface
(Figures 4b(i)), but owing to increase in the value of TH this layer gradually
disappears and that is expected; since the rate of heat transfer from the top heated
surface increases due to increase of TH (see Figure 7).

Now we draw the attention to see the effect of increase of Reynolds number on
the flow and temperature distribution in the square cavity. The streamlines and
the isotherms at steady state for Re ¼ 10, 50, 100, 150 and 200 are depicted,
respectively, in Figures 5a(i-v) and Figures 5b(i-v) while Ec ¼ 0.5 and TH ¼ 12 and
keeping values of all other parameters fixed. At smaller value of Re in Figure 5a(i),

Figure 7.
Values of Nusselt number
at the top moving surface

for different Ec while
TH ¼ 12.0, Re ¼ 10.0
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there exists 3-cells. With the increasing value of Re, the size of the primary cell
adjacent to the upper moving surface gradually increases and occupies almost the
entire cavity pushing down the secondary cell with anticlockwise circulation to the
left bottom corner of the cavity. It is interestingly observed from the numerical
computation the appearance of vortex at larger value of Re along the right vertical
wall (although not shown here) and it is because of the presence of heat due to
viscous dissipation in the flow field. Corresponding temperature distributions can
be seen in Figures 5b(i-v). As before, it can be seen that increase in Re reduces the
thermal boundary thickness near the lower cold surface and it is possible,
since at larger value of Re, the effect of gravitation force becomes negligible.
In this case the flow is governed by the forced convection and also because of
increase in Re the rate of heat transfer form the top heated surface increases
(see Figure 8).

Finally, in Figure 6a and b, we depict the streamlines and isotherms at steady
state for the flow in a rectangular cavity having width A ¼ 2 for three values of
the viscous dissipation parameter, Ec ( ¼ 0.0, 0.5 and 1.0) while TH ¼ 12.0 and
Re ¼ 100.0. First, if we compare Figure 2a(i) with Figure 6a(i), we see that, for
large aspect ratio, the primary cell that is present along the top moving surface
occupies a larger space in the cavity than in case of the quire cavity, and it is
because, the greater width of the cavity means that a much larger expanse of fluid
due to motion of the upper surface of the cavity. As we bring the effect of heat
due to viscous dissipation (Ec ¼ 0.5), the size of the secondary flow that was
prevailing at the left lower corner of the cavity become large and occupies almost
half of the space of the cavity and this also reduces the flow rate in the primary
flow region. Further increase of the heat due to viscous dissipation (when Ec ¼ 1.0)
separates the secondary cell from the lower cold surface and develops another cell
of opposite direction. Similar flow pattern has held in case of a square cavity.
From Figure 6b(i), while Ec ¼ 0.0, we see that there is a thin thermal boundary
layer prevails adjacent to the cold lower surface. As the effect of viscous
dissipation is added and then increased, this boundary layer region disappears
gradually. This is because, addition of heat due to viscous dissipation increases the
temperature of the fluid in the region near the heated moving surface considerably

Figure 8.
Values of Nusselt number
at the top moving surface
for different TH while
Ec ¼ 0.5, Re ¼ 100
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and hence results to diminish the heat transfer from the cold surface. Comparing
Figures 7-10, we may conclude that the rate of increase in the heat transfer from
the top heated surface is higher in case of a rectangular cavity than a square
cavity.

4. Conclusions
In this paper, we have considered the problem of unsteady, laminar mixed convection
heat transfer in a rectangular cavity. The vertical walls of the cavity were assumed to
be insulated whereas the top and the bottom walls were maintained at two different
constant temperatures. The top horizontal wall was assumed to move in its own plane
at constant speed. The fluid considered was water at maximum density condition.
Viscous dissipation effects were included in the analysis. The governing equations
were solved numerically by the finite difference method along with SOR iteration
technique.

The effect of viscous dissipation was to increase the fluid temperature and resulted
in the formation of vortex motion near the lower part of the cavity in an opposite
direction to the central vortex. An increase in the Eckert number and Reynolds number
of the flow resulted in augmented surface heat transfer rates from the top heated
surface. The results are shown for the streamlines and isotherms at various values of
the Eckert number and the Reynolds number.

Figure 9.
Values of Nusselt number
at the top moving surface

for different Re while
TH ¼ 12.0 and Ec ¼ 0.05

Figure 10.
Values of Nusselt number
at the top moving surface

for different Ec while
TH ¼ 12.0, Re ¼ 100.0 and

A ¼ 2:1
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